tellmarcosIn the age of rapid technological advancement, the concept of a quantum internet has captured the imagination of scientists and researchers worldwide. Unlike the classical internet we use today, a quantum internet promises to revolutionize communication by harnessing the strange and counterintuitive properties of quantum mechanics. In this article, we'll delve into the fascinating world of the quantum internet, exploring its potential applications, challenges, and the current state of research. tellhappystar tellgamestopWhat is the Quantum Internet? tellgamestop telldunkin.clickTo understand the quantum internet, we must first grasp the fundamental principles of quantum mechanics. Quantum mechanics describes the behavior of matter and energy at the smallest scales, where classical physics no longer applies. Key features of quantum mechanics include superposition and entanglement, which form the foundation of quantum communication. tellculvers tellcitybbqSuperposition: In quantum mechanics, particles can exist in multiple states simultaneously. This property allows quantum bits or qubits to represent both 0 and 1 at the same time, significantly increasing computational power. tellcaribou tellbrueggersEntanglement: When two quantum particles become entangled, their properties become correlated in such a way that the state of one particle instantaneously affects the state of the other, regardless of the distance separating them. This property is at the heart of quantum teleportation and quantum cryptography. tellbostonmarket The Quantum Internet's Potential Applications: Ultra-Secure Communication: One of the most promising applications of the quantum internet is quantum cryptography, which enables perfectly secure communication. Any attempt to eavesdrop on quantum-encrypted messages would disrupt the entangled particles, alerting both the sender and receiver to the intrusion. Quantum Teleportation: Although it won't lead to instantaneous transportation as seen in science fiction, quantum teleportation allows the transfer of quantum states between distant locations, making it a crucial tool for quantum computing and communication. Quantum Computing: The quantum internet will pave the way for quantum computing, which has the potential to solve complex problems exponentially faster than classical computers. This could revolutionize fields like drug discovery, cryptography, and optimization. Challenges and Current Research: Building a quantum internet is no easy task and is fraught with challenges. Some of the key hurdles include: Quantum Decoherence: Quantum systems are extremely delicate and susceptible to external interference, leading to decoherence, which disrupts quantum states. Researchers are working on developing error-correction techniques to mitigate this issue. Quantum Repeaters: As entangled particles lose their coherence over distance, the development of quantum repeaters is crucial to extend the range of quantum communication. This involves creating intermediate nodes that re-establish entanglement between distant qubits. Practical Implementation: Transforming theoretical concepts into practical, scalable technologies is a significant challenge. Researchers are exploring various physical systems, such as trapped ions, superconducting circuits, and photon-based approaches, to create viable quantum communication devices. The quantum internet holds immense promise for the future of communication and computing. While many challenges remain to be overcome, researchers are making rapid progress in developing the necessary technologies. As the quantum internet inches closer to reality, it has the potential to transform industries, enhance security, and unlock new frontiers in science and technology, ushering in an era of truly quantum communication.

Ruth Asawa to be honored with postage stamps depicting her wire sculptures – Internet Philatelic Dealers Association Inc
Trailblazing artist and arts education advocate Ruth Asawa will be honored with postage stamps. Photo: Deanne Fitzmaurice, The Chronicle 2002

San Francisco sculptor and arts education advocate Ruth Asawa will be honored with a series of  postage stamps, the United States Postal Service announced Friday, April 3.

The Asawa stamps will feature 10 designs, each depicting a different crocheted wire sculpture, the medium for which Asawa was best known, photographed by Dan Bradica and Laurence Cuneo. Ethel Kessler designed the stamp. The current design remains subject to change before printing.

The stamps will be available for purchase this year, after a stamp dedication ceremony still to be scheduled.  The public will be able to purchase them online at, by calling 800-782-6724, or in person at post offices.

An untitled Ruth Asawa work hangs in the San Francisco Museum of Modern Art. Photo: Michael Macor, The Chronicle 2016

The stamps come during a month of good publicity for Asawa, who died in 2013 at age 87. Marilyn Chase’s biography of the artist, “Everything She Touched: The Life of Ruth Asawa,” is scheduled to be released Tuesday, April 7.

Asawa has works on permanent exhibition at the de Young Museum, as well as public art on display throughout the Bay Area.

The daughter of Japanese immigrants and a survivor of Japanese internment, Asawa rose to prominence in the 1950s, a time when sculpting was dominated by white men. In 1982, she was instrumental in the creation of the San Francisco School of the Arts, which was renamed the Ruth Asawa San Francisco School of the Arts in 2010.

Asawa served on the San Francisco Arts Commission, the board of the Fine Arts Museums of San Francisco, the California Arts Council and the National Endowment of the Arts.

  • Lily Janiak
    Lily Janiak Lily Janiak is The San Francisco Chronicle’s theater critic. Email: Twitter: @LilyJaniak

Source: View original article

Leave a Reply